Telegram Group & Telegram Channel
Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/986
Create:
Last Update:

Что делать, если в обучающем наборе для методов на основе соседей часть меток отсутствует или указана неполностью

Методы, основанные на ближайших соседях (например, k-NN), предполагают, что каждая обучающая точка имеет метку. Отсутствие меток усложняет обучение и прогнозирование, особенно если таких точек много.

📝 Варианты решений

1. Игнорировать объекты без меток
Можно обучаться только на размеченных примерах, но при этом теряется часть данных, что особенно критично при малом объёме обучающей выборки.

2. Использовать полубезнадзорные методы (semi-supervised)
Например, распространение меток (label propagation): метки итеративно «перетекают» от размеченных точек к близким неразмеченным, если они достаточно похожи.

3. Изучение структуры данных через неразмеченные точки
Даже если метки отсутствуют, сами объекты помогают определить геометрию признакового пространства и уточнить, кто кому «сосед».

📝 Подводные камни:

📝 Полубезнадзорные методы требуют решать, когда доверять сгенерированным меткам — легко получить ложные закономерности.
📝 Если метки отсутствуют не случайно (например, только у сложных или редких объектов), это может внести систематическую ошибку.
📝 Оценка качества модели затрудняется — стандартные метрики предполагают, что мы знаем истинные метки хотя бы на тесте.

📝 Вывод

Если часть меток отсутствует, не всегда стоит их игнорировать. Лучше использовать структуру данных через полубезнадзорные методы и явно учитывать, насколько случайна или предвзята сама пропуск меток.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/986

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Библиотека собеса по Data Science | вопросы с собеседований from es


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA